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We consider a heteropolymer, consisting of an i.i.d. concatenation of hydro-
philic and hydrophobic monomers, in the presence of water and oil arranged in
alternating layers. The heteropolymer is modelled by a directed path (i, Si)i ¥ N0

,
where the vertical component lives on Z, and the layers are horizontal with
equal width. The path measure for the vertical component is given by that of
simple random walk multiplied by an exponential weight factor that favors
matches and disfavors mismatches between the monomers and the medium. We
study the vertical motion of the heteropolymer as a function of its total length n
when the width of the layers is dn and the parameters in the exponential weight
factor are such that the heteropolymer tends to stay close to an interface
(‘‘localized regime’’). In the limit as n Q . and under the condition that
lim n Q . dn/log log n=. and lim n Q . dn/log n=0, we show that the vertical
motion is a diffusive hopping between neighboring interfaces on a time scale
exp[qdn(1+o(1))], where q is computed explicitly in terms of a variational
problem. An analysis of this variational problem sheds light on the optimal
hopping strategy.

KEY WORDS: Random walk; random medium; large deviations; phase transition.

1. INTRODUCTION AND MAIN RESULT

1.1. One-Interface Heteropolymer

We begin by describing the one-interface model that was studied in
Bolthausen and den Hollander. (3) This model has two ingredients:



1. S=(Si)i ¥ N0
: a simple random walk on Z; Px, Ex denote its prob-

ability law and expectation, given S0=x.
2. w=(wi)i ¥ N: an i.i.d. sequence of random variables taking the

values ± 1 with probability 1/2 each; P, E denote its probability law and
expectation.

Fix l ¥ [0, .), h ¥ [0, 1), and n ¥ N. Given w, define a transformed prob-
ability law on path space by putting

P (0, n)
x (S)(w)=

1
Z (0, n)

x (w)
exp 3l C

n

i=1
D(Si)(wi+h)4 Px(S), (1.1)

where Z (0, n)
x (w) is the normalizing partition sum and

D(Si)=˛ sign(Si) if Si ] 0,

D(Si − 1) if Si=0.
(1.2)

We view P(0, n)
x as modelling the following situation. Think of (i, Si)i ¥ N0

as a directed polymer on Z2, starting at (0, x), consisting of monomers
represented by the bonds in the path. The lower half plane is water, the
upper half plane is oil. The monomers are of two different types, occurring
in a random order indexed by w. Namely, wi=−1 means that monomer
i is hydrophilic, wi=+1 that it is hydrophobic. Since D(Si)=−1 when
monomer i lies in the water and D(Si)=+1 when it lies in the oil, we see
that the weight factor in (1.1) encourages matches and discourages mis-
matches for the first n monomers. For h=0 both types of monomers
interact equally strongly with the water and with the oil. For h ¥ (0, 1), on
the other hand, the interaction strength is asymmetric: the hydrophobic
monomers interact more strongly with either solvent than the hydrophilic
monomers, resulting in the heteropolymer to prefer the oil in the upper half
plane over the water in the lower half plane. The parameter l is the overall
interaction strength and plays the role of inverse temperature.3

3 Note that the second line in (1.2) makes the interaction act on bonds rather than on sites.
Also note that (1.1) makes perfect sense for l, h ¥ R but that only the indicated range of l, h
is relevant.

The one-interface model is self-averaging:

Theorem 1.1 (ref. 3, Theorem 1). For every l ¥ [0, .) and h ¥ [0, 1)
there exists a deterministic number f(l, h) such that

lim
n Q .

1
n

log Z (0, n)
0 (w)=f(l, h) P-a.s. and in L1(P). (1.3)
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The function f is the specific free energy of the heteropolymer. It is
continuous, nondecreasing, and convex in both variables, and satisfies
f(l, h) \ lh. This lower bound comes from the following estimate, which
uses the strong law of large numbers for w:

Z (0, n)
0 (w) \ E0

5exp 3l C
n

i=1
D(Si)(wi+h)4 1{Si > 0 -1 [ i [ n}6

=exp 3lhn+l C
n

i=1
wi
4 P0[Si > 0 -1 [ i [ n]

=exp{lhn+o(n)} O(n−1/2), P-a.s. (1.4)

Let

D={(l, h): f(l, h)=lh},

L={(l, h): f(l, h) > lh}.
(1.5)

In view of (1.4), intuitively, D corresponds to the situation where the
heteropolymer moves away from the interface in the upward direction
(‘‘delocalized regime’’), while L corresponds to the situation where the
heteropolymer stays close to the interface and manages to place more than
half of its monomers in their preferred medium (‘‘localized regime’’). It
turns out that both these situations occur (see Fig. 1):

Theorem 1.2. (ref. 3, Theorem 2, Eq. (0.8)(iii), and Corollary 1).
For every l ¥ (0, .) there exists an hc(l) ¥ (0, 1) such that the hetero-
polymer is

localized if 0 [ h < hc(l),

delocalized if h \ hc(l).
(1.6)

Fig. 1. Qualitative picture of l W hc(l).
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Moreover, l W hc(l) is continuous and non-decreasing on [0, .), with
hc(l) ’ C1l as l a 0 and 1 − hc(l) ’ C2/l as l Q ., for some C1, C2 > 0.

In Biskup and den Hollander (2) various path properties were derived
that confirm the above intuitive description. In the delocalized regime D
the heteropolymer intersects the interface with zero frequency in the limit
as n Q . (ref. 2, Theorem 4). In the localized regime L, however, this
frequency is strictly positive, and the excursions away from the interface
are exponentially bounded both in length and in height (ref. 2, Theorem 3).
In Albeverio and Zhou (1) it was proved that for l ¥ (0, .) and h=0 both
the maximal length and the maximal height of an excursion are of order
log n (ref. 1, Theorems 5.3 and 6.1). The same holds true throughout the
localized regime L by the estimates in ref. 2.

The one-interface model defined in (1.1) and (1.2) was introduced
in Garel et al., (5) and early studies include Sinai (13) (h=0) and Grosberg
et al. (6) (w periodic). Recent results on related one-interface models appear
in Maritan et al., (10) Martin et al., (11) and Orlandini et al. (12)

1.2. Multi-Interface Heteropolymer

In the present paper we study a version of the above model where the
water and the oil are arranged in alternating horizontal layers. For n ¥ N,
we choose a layer thickness dn ¥ 2N (an even number for reasons of parity).
The interfaces separating the layers are located at the heights

“Dn=dnZ, (1.7)

while the (+1)-layers resp. the (−1)-layers span the heights

D+
n = 0

k ¥ N0

dn[(2k, 2k+1) 5 Z], D−
n = 0

k ¥ N0

dn[(2k − 1, 2k) 5 Z]. (1.8)

In analogy with (1.1) and (1.2), the probability law of the heteropolymer is
defined as

P̂ (0, m)
x, dn

(S)(w)=
1

Ẑ (0, m)
x, dn

(w)
exp 3l C

m

i=1
Ddn

(Si)(wi+h)4 Px(S), n, m ¥ N, (1.9)

where Ẑ (0, m)
x, dn

(w) is the normalizing partition sum and

Ddn
(Si)=˛+1 if Si ¥ D+

n ,

− 1 if Si ¥ D−
n ,

Ddn
(Si − 1) if Si ¥ “Dn.

(1.10)
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Here, we use the hat-superscript to distinguish the multi-interface model
from the one-interface model.

Our first result is a comparison of the multi-interface model with the
one-interface model on the level of the specific free energy.

Theorem 1.3. For every l ¥ [0, .), h ¥ [0, 1), and for every
sequence (dn) such that lim n Q . dn =.,

lim
n Q .

1
n

log Ẑ (0, n)
0, dn

(w)=f(l, h) P-a.s. and in L1(P). (1.11)

This result says that for any diverging layer width the two models have
the same specific free energy and hence the same phase diagram (see
Theorem 1.1 and Fig. 1). Intuitively, this result is plausible: as the inter-
faces move apart, the heteropolymer ‘‘gets to see only one interface at a
time.’’ We will see that the limit dn Q . makes the multi-interface model
tractable.

1.3. Path Behavior in the Localized Regime

We now come to the main result of this paper. Our goal is to analyze
the path behavior for the multi-interface model in the localized regime L,
in particular, we want to describe how fast the heteropolymer hops between
the interfaces.

For technical reasons we will not analyze the jump process between
the interfaces of the layers, but rather between the middle lines of the
layers, i.e., “Dn+dn/2. The reason is that the oil/water medium is symme-
tric with respect to these middle lines. Let us therefore introduce the stop-
ping times

ŷ(s)=inf{i ¥ N0 : Si=sdn/2} N inf{i ¥ N0 : Si=−s3dn/2}, s=± 1.
(1.12)

If S0=0, then ŷ(s) is the first time that S hits a middle line of a s-layer.
Furthermore, let us define y0=0 and the stopping times

y1=inf{i ¥ N0 : |Si − S0 |=dn},

yk+1=y1 p hyk
+yk for k ¥ N,

(1.13)

where hi denotes the time-shift by i. If S0 ¥ “Dn+dn/2, then yk is the
kth jump time between the middle lines of the layers. In terms of these
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quantities, the number of hits of middle lines up to time t after time ŷ(+1)
is given by

Nt=[sup{k ¥ N0 : yk p hŷ(+1)+ŷ(+1) [ t}+1] 1{ŷ(+1) [ t}, t ¥ [0, n],
(1.14)

and the vertical displacement at time t relative to the height at time ŷ(+1)
is given by

S̃t=(SyNt − 1 p hŷ(+1)+ŷ(+1) − Sŷ(+1)) 1{ŷ(+1) [ t}, t ¥ [0, n]. (1.15)

Similar formulas can be written down with ŷ(−1) instead of ŷ(+1), but we
choose to follow the jumps starting from the first hit of a middle line of a
(+1)-layer.

Theorem 1.4. Let (l, h) ¥ L. Fix a sequence (dn) such that

(I) lim
n Q .

dn/log log n=.,

(II) lim
n Q .

dn/log n=0.
(1.16)

Then there exists a constant q(l, h) ¥ (0, .) such that, under the averaged
measure E é P̂ (0, n)

0, dn
, the process (S̃t)t ¥ [0, n] is a simple random walk on dnZ

with i.i.d. random waiting times whose variance at time un satisfies

lim
n Q .

1
dn

log 5 1
(un) d2

n

VarE é P̂(0, n)
0, dn

(S̃un)6=−q(l, h), u ¥ (0, 1). (1.17)

Equation (1.17) says that

eq(l, h) dn(1+o(1))=average jump time between middle lines of layers.
(1.18)

Indeed, the variance (un) d2
n after un jumps is reduced by this factor. Note

that both u and d2
n can be absorbed into the error term and are in fact

redundant. Also note that exp[q(l, h) dn] grows slower than any power of
n and faster than any power of log n.

1.4. Discussion of Theorem 1.4 and Analysis of q(l, h)

We begin by explaining the two conditions in (1.16). The results cited
in Section 1.1 for the one-interface model, in combination with Theorem 1.3,
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tell us that in the localized regime L the heteropolymer is tied down to the
interfaces in “Dn. The excursions away from “Dn have a typical length of
order one and a maximal length and height of order log n. Condition (II)
therefore guarantees that the heteropolymer jumps between the interfaces
many times prior to time n (i.e., the medium is ‘‘not too macroscopic’’). On
the other hand, condition (I) guarantees that the heteropolymer does not
jump too frequently, so that between jumps it stabilizes near an interface
(i.e., the medium is ‘‘not too microscopic’’). We do not know whether
log log n is optimal as a lower bound, but it is important in our proof.

The proof of Theorem 1.4 shows that there exist constants qs(l, h),
s ± 1, such that

eqs(l, h) dn(1+o(1))=average crossing time of s-layers, (1.19)

which implies that

q(l, h)=q−1(l, h) K q+1(l, h). (1.20)

In the course of the proof of Theorem 1.4 we give an explicit description of
qs(l, h) in terms of a variational problem involving a one-interface model
with one neutral solvent (see (4.1), (4.2), and (4.18)). An analysis of this
variational problem leads to the following qualitative picture.

Theorem 1.5. For every l ¥ (0, .):

(i) q−1(l, 0)=q+1(l, 0).

(ii) On [0, hc(l)), h W q−1(l, h) is continuous and non-decreasing,
while h W q+1(l, h) is continuous and non-increasing.

(iii) lim h ‘ hc(l) q+1(l, h)=0.

Fig. 2. Qualitative picture of h W qs(l, h) for s ± 1 and l ¥ (0, .).
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In view of (1.20) and Theorem 1.5(i–ii), we have

q(l, h)=q−1(l, h), (1.21)

i.e., the variance in (1.17) is dominated by the average crossing time of the
(−1)-layers, which is at least as long as the average crossing time of the
(+1)-layers. This comes from the fact that the heteropolymer prefers to
wander off into the (+1)-layers as soon as h > 0. In view of Theorem 1.5(iii),
on the phase transition line separating L from D (see Fig. 1) the average
crossing time of the (+1)-layers vanishes on time scale edn. We have no
control over how the average crossing time of the (−1)-layers behaves in
the delocalized regime D, but we expect it to be smooth across the phase
transition line (see the dotted line with question mark in Fig. 2).

We are unable to prove strict monotonicity of h W qs(l, h), as
suggested in Fig. 2.

1.5. Some Future Challenges

Here is a list of some open problems that merit closer investigation:

(1) Is there a version of (1.17) for the quenched rather than the
averaged model, i.e., for P-a.s. all w with respect to P̂ (0, n)

0, dn
(w)? We expect

that the answer is yes, with the same q, because of the ergodic theorem for w.
A proof can probably be worked out with the help of the ‘‘decoupling of
excursions’’ argument in Section 3.

(2) What can we say about the hopping in the delocalized regime D?
Since the crossing of the (−1)-layers is harder than in the localized regime L,
we expect the jump process to further slow down (see the dotted line with
question mark in Fig. 2).

(3) What happens when the layer widths are random, say, layer k has
width Ykdn with (Yk)k ¥ Z i.i.d. random variables that are bounded away
from 0 and .? The underlying jump process between layers will be a
random walk in random environment.

(4) The present paper is a first attempt to move away from the
simple geometry of a single flat interface. We are ultimately interested in
situations where the two media mix ‘‘as droplets of oil floating around in
water.’’ Can anything be said for such more complicated models? A toy
model in this direction is studied in den Hollander and Whittington. (7)
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1.6. Outline

In Section 2 we prove Theorem 1.3 and derive a number of prepara-
tory lemmas. In Section 3 we provide a decoupling argument through
which the probability law of the lengths of the successive excursions can be
estimated in terms of that of a single excursion. In Section 4 we give
asymptotic estimates for the latter. In Section 5 these estimates are used to
prove Theorem 1.4. Theorem 1.5 is proved in Section 6.

2. PROOF OF THEOREM 1.3 AND PREPARATIONS

This section contains the proof of Theorem 1.3 as well as three tech-
nical lemmas (Lemmas 2.1–2.3) that will be needed along the way. In
Section 2.1 we look at partition sums, in Section 2.2 at excursion lengths.

2.1. Asymptotic Behavior of Partition Sums

We start with the proof of Theorem 1.3, which together with
Theorem 1.2 shows that Fig. 1 is the phase diagram also for the multi-
interface model. Throughout the sequel we write

Hm, dn
(w, S)=l C

m

i=1
Ddn

(Si)(wi+h) (2.1)

to denote the Hamiltonian of the multi-interface heteropolymer defined in
(1.9) and

Hn(w, S)=l C
n

i=1
D(Si)(wi+h) (2.2)

to denote the Hamiltonian of the one-interface heteropolymer defined
in (1.1).

Proof of Theorem 1.3. The proof is based on a folding argument
applied to the random walk S. We assume that S0=0.

Define g0=0 and

g1=inf{i ¥ N : Si ¥ “Dn 0{S0}},

gk+1=g1 p hgk
+gk, k ¥ N,

(2.3)
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i.e., gk is the kth crossing time of a layer, and

a1=sup{0 < i < g1 : |Si − Sg1
|=|Sg0

− Sg1
|/2},

ak+1=a1 p hgk
+gk, k ¥ N,

(2.4)

i.e., ak is the last hitting time of a middle line of a layer prior to time gk.
Also define

Nn=sup{k ¥ N0 : gk [ n}, (2.5)

i.e., the number of layer crossings up to time n. Obviously, Nn [ n/dn.
Next, define a folding map S W Sg for S=(Si)

n
i=0 and Sg=(Sg

i )n
i=0 as

follows. Put S (0)
i =Si for 0 [ i [ n. For 1 [ k [ Nn, define recursively

S (k)
i =˛S (k − 1)

i if 1 [ i [ ak,

2S (k − 1)
ak

− S (k − 1)
i if i > ak,

(2.6)

and set Sg=S(Nn). Thus, we successively reflect the tail of the path at the
heights ± dn/2. The important observation is that sup 0 [ i [ n |Sg

i | < dn,
Sg

gk
=0 for 0 [ k [ Nn, and

Ddn
(Si)=D(Sg

i ) for 0 [ i [ n, (2.7)

the latter implying, via (2.1) and (2.2), that

Hn, dn
(w, S)=Hn(w, Sg). (2.8)

Therefore we need only worry about how many paths S are mapped onto a
single path Sg.

To that end, define R0=0 and

R1=inf{i ¥ N : Si ¥ “Dn},

Rk+1=R1 p hRk
+Rk, k ¥ N,

(2.9)

i.e., Rk is the kth hitting time of an interface. Pick any path Sg with
sup 0 [ i [ n |Sg

i | < dn. We can defold Sg whenever

sup
Rk − 1(S g) [ i < Rk(S g)

|Sg
i |=dn/2, 1 [ k [ Nn(Sg). (2.10)
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But this event can occur at most n/dn times and therefore Sg is the image
of at most 2n/dn paths S. Hence, using (2.8) we get

Ẑ (0, n)
0, dn

(w)=C
S

exp{Hn, dn
(w, S)} 2−n

[ 2n/dn C
S g: sup0 [ i [ n |Sg

i | < dn

exp{Hn(w, Sg)} 2−n

[ 2n/dnZ (0, n)
0 (w) (2.11)

and similarly

Ẑ (0, n)
0, dn

(w) \ C
S: sup0 [ i [ n |Si| < dn

exp{Hn, dn
(w, S)} 2−n

= C
S g: sup0 [ i [ n |Sg

i | < dn

exp{Hn(w, Sg)} 2−n

\ 2−n/dn C
S

exp{Hn(w, S)} 2−n=2−n/dnZ (0, n)
0 (w). (2.12)

Since lim n Q . dn=., Theorem 1.3 is now a consequence of Theorem 1.1
and (2.11) and (2.12). L

We next consider the partition sum for the multi-interface model up to
time 2n restricted to the endpoint S2n lying in an interface:

Ẑ (0, 2n)
0, “Dm, dm

(w)=E0[exp{H2n, dm
(w, S)}, S2n ¥ “Dm]. (2.13)

The following lemma says that this restriction has no effect on the specific
free energy.

Lemma 2.1. For every l ¥ [0, .), h ¥ [0, 1) and for every sequence
(dn) such that lim n Q . dn=.,

lim
n Q .

1
2n

log Ẑ (0, 2n)
0, “Dn, dn

(w)=f(l, h) P-a.s. and in L1(P). (2.14)

Proof of Lemma 2.1. Using the stopping time R1 defined in (2.9),
we have for m ¥ N,
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Ẑ (0, 2m)
0, dn

(w)

=Ẑ (0, 2m)
0, “Dn, dn

(w)+ C
m − 1

k=0
Ẑ (0, 2k)

0, “Dn, dn
(w) E0[exp{H2m − 2k, dn

(h2kw, S)}, R1 > 2m − 2k]

=Ẑ (0, 2m)
0, “Dn, dn

(w)+ C
m − 1

k=0
Ẑ (0, 2k)

0, “Dn, dn
(w) E0[exp{H2m − 2k, dn

(h2kw, S)}, R1=2m − 2k]

×
P0[R1 > 2m − 2k]
P0[R1=2m − 2k]

[ Ẑ (0, 2m)
0, “Dn, dn

(w)+ C
m − 1

k=0

Ẑ (0, 2k)
0, “Dn, dn

(w) E0[exp{H2m − 2k, dn
(h2kw, S)}, R1=2m − 2k]

P0[R1=2m − 2k]
.

(2.15)

Here, the first line is a renewal relation, while the second line uses that the
excursion starting from an interface at time 2k stays within a single layer until
time 2m. Next we apply the folding argument from the proof of Theorem 1.3:
for l ¥ N we fold the part of the path that lies between inf{i > 0 : Si=dn/2}
and sup{0 < i < 2l : Si=dn/2} into the layer (0, dn) 5 N with symmetry axis
dn/2. Then we get

P0[R1=2l] \ P0[R1=2l, S2l=0]

=2P0[Si ¥ (0, dn) for 0 < i < 2l, S2l=0]

\ 2 × 2−2l/dnP0[Si > 0 for 0 < i < 2l, S2l=0]

\ 2−2l/dnc−1
1 l−3/2. (2.16)

Substituting (2.16) into the last line of (2.15) to estimate the denominator of
the summand, we find the second inequality in

Ẑ (0, 2m)
0, “Dn, dn

[ Ẑ (0, 2m)
0, dn

[ (1+c122m/dnm3/2) Ẑ (0, 2m)
0, “Dn, dn

. (2.17)

The first inequality is trivial. Together with Theorem 1.3 this yields the
claim. L

2.2. Estimates on Large Excursions

Our next lemma is a large deviation result for the restricted partition
sum defined in (2.13) and for the successive excursion lengths, both in the
localized regime L. Recall from (1.5) that f(l, h) > lh for (l, h) ¥ L.
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Lemma 2.2. Assume that (l, h) ¥ L and lim n Q . dn=..

(i) For all e ¥ (0, f(l, h) − lh) there exists a de > 0 such that for all
large n

P 5 1
2n

log Ẑ (0, 2n)
0, “Dn, dn

(w) < f(l, h) − e6 [ exp{− den}. (2.18)

(ii) There exist constants o > 0 and c(o) > 0 such that, for all K ¥ N
and all mk ¥ 2N (1 [ k [ K) with ;K

k=1 mk [ n,

E é P̂ (0, n)
0, dn

[Rk − Rk − 1=mk for 1 [ k [ K] [ c(o) D
K

k=1
exp{− omk}. (2.19)

Proof of Lemma 2.2. The proof is similar to that of Lemmas 3 and 4
in Biskup and den Hollander. (2) Lemma 2.1 is needed for the proof of (i),
while (i) is needed for the proof of (ii). The reader is referred to ref. 2 for
details. L

We close this section with an estimate on the maximal excursion length
away from an interface. For l, n ¥ N, define

Rdn
l =sup

k ¥ N

{(Rk N l) − (Rk − 1 N l)}, (2.20)

i.e., the maximal excursion length up to time l.

Lemma 2.3. Assume that (l, h) ¥ L and lim n Q . dn=.. There
exist o > 0 and c2 > 0 such that for all z > 0,

E é P̂ (0, n)
0, dn

[Rdn
l > z log n] [ c2n1 − oz, n Q .. (2.21)

Proof of Lemma 2.3. For z > 0 and n ¥ N we have

E é P̂ (0, n)
0, dn

[Rdn
n > z log n]

[ C
n − z log n − 1

i=0
E é P̂ (0, n)

0, dn
[Si ¥ “Dn, (R1 p hi) N (n − i) > z log n]

= C
n − z log n − 1

i=0
C
n − i

k=z log n+1
E é P̂ (0, n)

0, dn
[Si ¥ “Dn, R1 p hi=k]

[ C
n − z log n − 1

i=0
C
n − i

k=z log n+1
E é P̂ (0, n)

0, dn
[R1 p hi=k | Si ¥ “Dn]

= C
n − z log n − 1

i=0
C
n − i

k=z log n+1
E é P̂ (0, n − i)

0, dn
[R1=k]. (2.22)
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Using Lemma 2.2(ii), we see that there exist constants o > 0 and c3 > 0
such that for all z > 0,

E é P̂ (0, n)
0 [Rdn

n > z log n] [ C
n − z log n − 1

i=0
C
n − i

k=z log n+1
c3 exp{− ok}

[ nc3o−1n−oz, n Q .. (2.23)

This proves the claim with c2=c3o−1. L

3. DECOUPLING OF EXCURSIONS

This section contains three further lemmas (Lemmas 3.1–3.3) in which
we estimate the probability law of the lengths of the successive excursions
in terms of that of a single excursion. The latter will be estimated in
Section 4. In Section 3.1 we look at the effect of adding a bridge point, in
Section 3.2 we derive the decoupling estimates.

3.1. Adding a Bridge Point

We begin by estimating how much it costs to do an additional hitting
of an interface. For z > 0 and l, n ¥ N, define the event (recall (2.20))

An
l ={Rdn

l [ z log n}. (3.1)

Lemma 3.1. Assume that lim n Q . dn=.. For all z > 0 there exists
c4 > 0 such that for all b ¥ 2N,

P̂ (0, n)
0, dn

[An
n] [ c4d3

nP̂ (0, n)
0, dn

[An
n, Sb ¥ “Dn], n Q .. (3.2)

Proof of Lemma 3.1. For b ¥ 2N, define

Lb=sup{0 [ k [ b : Sk ¥ “Dn}, (3.3)

i.e., the last hitting time of an interface prior to time b. For simplicity we
assume that b [ n − z log n. Then we have

E0[exp{Hn, dn
(w, S)}, An

n]

=E0[exp{Hn, dn
(w, S)}, An

n, Lb=b]

+ C
2 [ l+r [ z log n

E0[exp{Hn, dn
(w, S)}, An

n, b − Lb=l, R1 p hb=r].
(3.4)

The case b > n − z log n is analogous, but we have to restrict the sum in
(3.4) to r [ n − b. Let us estimate the last term in the above inequality for
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fixed l, r. The important observation is that, on the event {b − Lb=l,
R1 p hb=r}, Ddn

(Si) has the same sign for all b − l < i [ b+r. If we want to
do an additional hitting of an interface in this interval, then all we have to
do is to make sure that the hitting of the interface is in fact a reflection at
the interface, since this does not change the sign of Ddn

(Si) and hence leaves
the Hamiltonian Hn, dn

(w, S) in (2.1) invariant. Consequently,

E0[exp{Hn, dn
(w, S)}, An

n, b − Lb=l, R1 p hb=r]

[ 2E0[exp{Hn, dn
(w, S)}, An

n, b − Lb=l, R1 p hb=r, SLb=SR1 p hb
]

=2 C
z ¥ “Dn

E0[exp{Hb − l, dn
(w, S)}, An

b − l, Sb − l=z]

× Ez[exp{Hl+r, dn
(hb − lw, S)}, An

l+r, R1=l+r, Sl+r=z]

× Ez[exp{Hn − (b+r), dn
(hb+rw, S)}, An

n − (b+r)]

=E0[exp{Hn, dn
(w, S)}, An

n, R1 p hb − l=l, R2 p hb − l=l+r,

Sb − l=Sb=Sb+r ¥ “Dn]

×
2P0[R1=l+r, Sl+r=0]

P0[R1=l, R2=l+r, Sl=Sl+r=0]
. (3.5)

The inequality uses the fact that paths may be reflected in middle lines
because the medium is symmetric with respect to middle lines. A standard
calculation for simple random walk gives that

P0[R1=m, Sm=0]=
1
dn

C
|k| < dn

cosm 1pk
dn

2 sin2 1pk
dn

2 (3.6)

(see, e.g., Hughes, (9) Eq. (3.291)). It is therefore easily seen that the ratio in
the last term in (3.5) is bounded above by c4d3

n uniformly in l, r. Inserting
this bound into (3.5) and the resulting estimate into (3.4), we obtain

E0[exp{Hn, dn
(w, S)}, An

n]

[ c4d3
n
1E0[exp{Hn, dn

(w, S)}, An
n, Lb=b]

+ C
2 [ l+r [ z log n

E0[exp{Hn, dn
(w, S)}, An

n, R1 p hb − l=l, R2 p hb − l=l+r,

Sb − l=Sb=Sb+r ¥ “Dn]2

=c4d3
nE0[exp{Hn, dn

(w, S)} An
n, Sb ¥ “Dn]. (3.7)

Divide by E0[exp{Hn, dn
(w, S)}] to get the claim (recall (1.9)). L
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3.2. Decoupling Estimates for Excursion Times

We now come to our two main decoupling estimates. For fixed w, the
successive excursion lengths are dependent. Lemmas 3.2 and 3.3 below
show that, under E é P̂ (0, n)

0, dn
, they can be decoupled at the price of an error

term. Recall (1.12) and (1.13).

Lemma 3.2. Assume that lim n Q . dn=.. For all z > 2/o there
exists c5 > 0 such that for all N ¥ N and li \ dn/2 (0 [ i [ N) with

C
N

i=0
(li+z log n) [ n (3.8)

the following is true as n Q .:

E é P̂ (0, n)
0, dn

5{ŷ(+1) [ l0} 5 3
N

i=1
{yi p hŷ(+1) − yi − 1 p hŷ(+1) [ li}6

[ c2n1 − oz+ inf
IN … {0,..., N}

D
i ¥ IN

(c5d6
n E é P̂ (0, n)

0, dn
[ŷ((−1) i) [ li, A

n
n]+c2n1 − oz).

(3.9)

Proof of Lemma 3.2. After applying Lemma 2.3, we can restrict
ourselves to events contained in An. Fix any IN … {0,..., N}. Throughout
the proof we assume that n is large enough.

First we consider the case 0 ¥ IN. Using the inequality

Ẑ (0, n)
0, dn

(w) \ Ẑ (0, 2m)
0, “Dn, dn

(w) Ẑ (0, n − 2m)
0, dn

(h2mw), 0 [ 2m [ n, (3.10)

the independence on disjoint time intervals and Lemma 2.3, we have
(variables with the wrong parity automatically cancel)

E é P̂ (0, n)
0, dn

5{ŷ(+1) [ l0} 5 3
N

i=1
{yi p hŷ(+1) − yi − 1 p hŷ(+1) [ li}, An

n
6

[ C
l0

t0=dn/2
C

z log n

r0=dn/2
E é P̂ (0, t0+r0)

0, “Dn, dn
[ŷ(+1)=t0, R1 p ht0

=r0, An
t0+r0

] E é P̂ (0, n − (t0+r0))
0, dn

5{ŷ(−1) [ l1 − r0} 5 3
N

i=2
{yi − 1 p hŷ(−1) − yi − 2 p hŷ(−1) [ li}, An

n − (t0+r0)
6

[ 1 C
l0

t0=dn/2
C

z log n

r0=dn/2
E[P̂ (0, t0+r0)

0, “Dn, dn
[ŷ(+1)=t0, R1 p ht0

=r0, An
t0+r0

] P̂ (0, n)
0, dn

[An
n]]+c2n1 − oz2

× sup
dn [ t0 [ l0+z log n

E é P̂ (0, n − t0)
0, dn

5{ŷ(−1) [ l1} 5 3
N

i=2
{yi − 1 p hŷ(−1) − yi − 2 p hŷ(−1) [ li}, An

n − t0
6 . (3.11)
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Note that the term under the supremum is of the same type as the one
in the left-hand side of (3.11) but with ŷ(+1) replaced by ŷ(−1) due to a
change of layer (recall (1.12)). To the first term on the right-hand side we
can apply Lemma 3.1. Indeed, choose b=t0+r0, to estimate

P̂ (0, n)
0, dn

[An
n] [ c4d3

n P̂ (0, n)
0, dn

[An
n, St0+r0

¥ “Dn]

[ c4d3
n

Ẑ (0, t0+r0)
0, “Dn, dn

(w) E0[exp{Hn − (t0+r0), dn
(ht0+r0

w, S)}, An
n − (t0+r0)]

Ẑ (0, n)
0, dn

(w)
,

(3.12)

which gives

C
l0

t0=dn/2
C

z log n

r0=dn/2
E[P̂ (0, t0+r0)

0, “Dn, dn
[ŷ(+1)=t0, R1 p ht0

=r0, An
t0+r0

] P̂ (0, n)
0, dn

[An
n]]

[ c4d3
n E é P̂ (0, n)

0, dn
[ŷ(+1) [ l0, An

n]. (3.13)

Next we consider the case 0 ¨ IN. Define k0=inf{k ¥ N0; k ¥ IN}. For
k ¥ N0, define l̄k=;k

i=0 li. Then, using (3.12), we obtain as in (3.11),

E é P̂ (0, n)
0, dn

5{ŷ(+1) [ l0} 5 3
N

i=1
{yi p hŷ(+1) − yi − 1 p hŷ(+1) [ li}, An

n
6

[ 1 C
l̄k0 −1

t=0
C

z log n

r=dn/2
E[P̂ (0, t+r)

0, “Dn, dn
[yk0 −1 p hŷ(+1)=t, R1 p ht0

=r, An
t+r] P̂ (0, n)

0, dn
[An

n]]+c2n1 − oz2

× sup
0 [ t [ l̄k0 − 1+z log n

E é P̂ (0, n − t)
0, dn

5{ŷ((−1)k0) [ lk0
} 5 3

N

i=k0+1
{yi − k0

p hŷ((−1)k0) − yi − k0 − 1 p hŷ((−1)k0) [ li}, An
n − t
6

[ (c4d3
n+c2n2 − oz) × sup

n − l̄k0 − 1+z log n [ n0 [ n
E é P̂ (0, n0)

0, dn

5{ŷ((−1)k0) [ lk0
} 5 3

N

i=k0+1
{yi − k0

p hŷ((−1)k0) − yi − k0 − 1 p hŷ((−1)k0) [ li}, An
n0
6 .

(3.14)

Iterating the above decoupling argument, we obtain the claim for
c5=2c2

4. Note that c2n2 − oz [ c4d3
n for large n because z > 2/o. L
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Lemma 3.3. Assume that lim n Q . dn=.. For all z > 0 there exists
c4 > 0 such that for all N ¥ N and li ¥ N (0 [ i [ N) the following is true as
n Q .:

E é P̂ (0, n)
0, dn

5{ŷ(+1) N n > l0} 5 3
N

i=1
{(yi p hŷ(+1)) N n − (yi − 1 p hŷ(+1)) N n > li}6

[ c2n1 − oz+D
N

i=0
(c4d3

n E é P̂ (0, n)
0, dn

[ŷ((−1) i) N n > li − z log n, An
n]+c2n1 − oz).

(3.15)

Proof of Lemma 3.3. The proof is similar to that of Lemma 3.2.
Therefore we only indicate where the two proofs differ. Abbreviate nt0, r0

=
n − (t0+r0). Then, as in (3.11), we have

E é P̂ (0, n)
0, dn

5{ŷ(+1) N n > l0} 5 3
N

i=1

{(yi p hŷ(+1)) N n − (yi − 1 p hŷ(+1)) N n > li}, An
n
6

[ C
n

t0=l0+1

C
z log n N (n − t0)

r0=dn/2

E é P̂ (0, t0+r0)
0, “Dn, dn

[ŷ(+1) N n=t0, R1 p ht0
N (n − t0)=r0, An

t0+r0
]

× sup
l0 [ t0 [ n

dn/2 [ r0 [ z log n N (n − t0)

E é P̂ (0, nt0, r0
)

0, dn
5{ŷ(−1) N nt0, r0

> l1 − r0}

5 3
N

i=2

{(yi − 1 p hŷ(−1)) N nt0, r0
− (yi − 2 p hŷ(−1)) N nt0, r0

> li}, An
nt0, r0

6 . (3.16)

Now we can deduce the claim in the same way as for Lemma 3.2, using in
addition that {ŷ(−1) N k > l1 − r0} … {ŷ(−1) N n > l1 − z log n} for dn/2 [ r0

[ z log n and 0 [ k [ n. L

Lemmas 3.2 and 3.3 provide an upper bound for the probability that
the lengths of the first N excursions from the middle line of a (+1)-layer do
not exceed, respectively, exceed l1,..., lN, for N arbitrary. These bounds will
be used in Section 5 to prove Theorem 1.4.

4. THE FIRST-PASSAGE TIME

In the previous section we have decoupled the excursions. In the
present section we derive the key estimates that involve a single excursion.
In Section 4.1 we look at a one-interface model with one neutral solvent,
which plays a key role in the variational problem for q(l, h) in
Theorem 1.4 that will be introduced in Section 4.2. In Section 4.3 we use
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this variational problem to derive upper and lower bounds for the first-
passage time.

4.1. A One-Interface Model with One Neutral Solvent

For m ¥ 2N and s=± 1, define (recall (2.13))

Y (0, m)
0, “Dn, dn

(w, s)=
exp{sl ;m

i=1 (wi+h)}
Ẑ (0, m)

0, “Dn, dn
(w)

. (4.1)

Lemma 4.1. For every (l, h) ¥ L and s=± 1 there exists a deter-
ministic number ms(l, h) ¥ (0, .) such that, for every sequence (dn) with
lim n Q . dn=.,

lim
n Q .

1
2n

log E[Y(0, 2n)
0, “Dn, dn

(w, s)]=−ms(l, h). (4.2)

Proof of Lemma 4.1. For m ¥ 2N and s=± 1, define

Y (0, m)(w, s)=
1

E0[exp{l ;m
i=1 (D(Si) − s)(wi+h)}, Sm=0]

. (4.3)

Note that the interaction is neutral for the s-layers (s=± 1). Using the
folding argument from the proof of Theorem 1.3, we see that

2−2n/dnY (0, 2n)(w, s) [ Y (0, 2n)
0, “Dn, dn

(w, s) [ 22n/dnY (0, 2n)(w, s), (4.4)

so it suffices to prove that

lim
n Q .

1
2n

log E[Y (0, 2n)(w, s)]=−ms(l, h). (4.5)

For m, l ¥ 2N we have, using the independence of w on disjoint time
intervals,

log E[Y (0, m+l)(w, s)]

=log E 5 1
E0[exp{l ;m+l

i=1 (D(Si) − s)(wi+h)}, Sm+l=0]
6

[ log E 5 1
E0[exp{l ;m+l

i=1 (D(Si) − s)(wi+h)}, Sm=Sm+l=0]
6

=log E[Y(0, m)(w, s)]+log E[Y (0, l)(w, s)]. (4.6)
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Hence m W log E[Y(0, m)(w, s)] is a subadditive sequence, which implies
(4.5) with

− ms(l, h)=inf
n \ 1

1
2n

log E[Y (0, 2n)(w, s)]. (4.7)

It remains to prove that ms(l, h) ¥ (0, .). Using Chebychev’s inequality,
we see that

log E[Y (0, 2n)(w, s)]

\ − log E 5E0
5exp 3l C

2n

i=1
(D(Si) − s)(wi+h)4 , S2n=066

\ − 4l(1+h) n, (4.8)

so ms(l, h) [ 2l(1+h). On the other hand,

E[Y(0, 2n)(w, −1)+Y(0, 2n)(w, +1)]

=2E 5(1/2) exp{− l ;2n
i=1 (wi+h)}+(1/2) exp{l ;2n

i=1 (wi+h)}
E0[exp{l ;2n

i=1 D(Si)(wi+h)}, S2n=0]
6

=
2

P0[T1=2n]
E[P (0, 2n)

0, 0 [T1=2n]], (4.9)

where T1=inf{k ¥ N : Sk=0} and P (0, 2n)
0, 0 is the path measure defined as

P (0, 2n)
0, 0 (S)=

1
Z (0, 2n)

0, 0

exp 3l C
2n

i=1
D(Si)(wi+h)4 1{S2n=0}P0(S), (4.10)

with Z(0, 2n)
0, 0 the normalizing partition sum. From Biskup and den Hollander,(2)

Lemma 4, we know that for every (l, h) ¥ L there exists a o > 0 such that

E[P (0, 2n)
0, 0 [T1=2n]] [ exp{− 2on}, n Q .. (4.11)

Moreover, we know that P0[T1=2n] \ (c6n)−3/2. Hence (4.9) yields

1
2n

log E[Y(0, 2n)(w, s)] [
1
2n

log E[Y (0, 2n)(w, −1)+Y(0, 2n)(w, +1)]

[
1
2n

[log 2+(3/2) log(c6n) − 2on], n Q ..
(4.12)

So ms(l, h) \ o > 0. L
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4.2. Variational Formula for q(l, h)

Lemma 4.2. Assume that lim n Q . dn=.. For y \ 1 and every
nonnegative sequence (en) such that lim n Q . en=0,

lim
n Q .

1
dn

log P0[R1 \ ydn, max
1 [ i [ ydn

Si \ dn/2, Sydn
[ endn]=−I(y), (4.13)

where

I(y)=
y+1

2
log

y+1
y

+
y − 1

2
log

y − 1
y

. (4.14)

Proof of Lemma 4.2. This is an elementary large deviation estimate
for simple random walk, based on a combinatorial expression similar to
(3.6). Indeed, I(y) is y times the relative entropy of y+1

2y d+1+y − 1
2y d−1 with

respect to 1
2 d+1+1

2 d−1. L

We note that the rate function y W I(y) is strictly decreasing with
limy a 1 I(y)=log 2 and limy Q . I(y)=0.

For e1 ¥ (0, ms(l, h)), we next define

qs(l, h, e1)=min
y \ 1

{y[ms(l, h) − e1]+I(y)}. (4.15)

Let ys(e1) denote the maximizer, i.e.,

qs(l, h, e1)=ys(e1)[ms(l, h) − e1]+I(ys(e1)). (4.16)

We have

lim
e1 a 0

qs(l, h, e1)=qs(l, h, 0)=qs(l, h),

lim
e1 a 0

ys(e1)=ys(0)=ys,
(4.17)

and

qs(l, h)=min
y \ 1

{yms(l, h)+I(y)} ¥ [ms(l, h), ms(l, h)+log 2]. (4.18)

Define

q(l, h)=max{q−1(l, h), q+1(l, h)}. (4.19)

The quantity q(l, h) will be analyzed in Section 6.
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4.3. First-Passage Time

In this section we derive upper and lower bounds for the first-passage
time involving q(l, h) (Lemmas 4.3 and 4.4). It is now that conditions
(1.16)(I) and (1.16)(II) come into play.

Lemma 4.3. Assume (1.16)(I). For all e2 > 0 and l ¥ N,

E é P̂ (0, n)
0, dn

[ŷ(s) [ l, An
n] [ l exp{− qs(l, h) dn+e2dn}, n Q .. (4.20)

Proof of Lemma 4.3. We borrow an argument from the proof of
Lemma 6.2 in Albeverio and Zhou. (1) For s=± 1 and e ¥ (0, 1/2), we
estimate (recall (1.12))

E é P̂ (0, n)
0, dn

[ŷ(s) [ l, An
n]

[ C
l − 1

k=0
C

! z log n
edn

− 1"

j=# 1
e+1$

C
p=0, 1

E é P̂ (0, n)
0, dn

[Sk=p(−sdn), R1 p hk ¥ [(j − 1) edn, (j+1) edn],

max
1 [ i [ R1 p hk

(−1)p sSk+i \ dn/2+pdn, An
n]. (4.21)

Let us first consider the case p=0 and s=1. We estimate

E é P̂ (0, n)
0, dn

[Sk=0, R1 p hk ¥ [(j − 1) edn, (j+1) edn], max
1 [ i [ R1 p hk

Sk+i \ dn/2, An
n]

=2E é P̂ (0, n)
0, dn

[Sk=0, R1 p hk ¥ [(j − 1) edn, (j+1) edn],

max
1 [ i [ R1 p hk

Sk+i \ dn/2, Sk+R1 p hk
=0, An

n]

[ 2E é P̂ (0, n)
0, dn

[Sk=0, R1 p hk ¥ [(j − 1) edn, (j+1) edn],

max
1 [ i [ (j − 1) edn

Sk+i \ dn/2, Sk+(j − 1) edn
[ 2edn, An

n]

[ 2 C
N(j+1) edn M

m=N(j − 1) edn M

E[Y (0, m)
0, “Dn, dn

(w, +1)]

× P0[R1 \ (j − 1) edn, max
1 [ i [ (j − 1) edn

Si \ dn/2, S(j − 1) edn
[ 2edn]. (4.22)

In the last line we recall (4.1) and use that after time k the path returns to
the interface for the first time at time k+m (the inequality is uniform in k).
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The cases p=1 and/or s=−1 are analogous. Inserting the estimates into
(4.21), we obtain

E é P̂ (0, n)
0, dn

[ŷ(s) [ l, An
n]

[ 4 C
l − 1

k=0
C

! z log n
edn

− 1"

j=# 1
e+1$

C
N(j+1) edn M

m=N(j − 1) edn M

E[Y(0, m)
0, “Dn, dn

(w, s)]

× P0[R1 \ (j − 1) edn, max
1 [ i [ (j − 1) edn

Si \ dn/2, S(j − 1) edn
[ 2edn].

(4.23)

Next we use Lemmas 4.1 and 4.2. Pick e2 > 0, and pick e1 ¥ (0, ms(l, h))
so small that |qs(l, h, e1) − qs(l, h, 0)| [ e2/3. Furthermore, pick e=en

such that en Q 0 and endn Q . as n Q .. Then

E é P̂ (0, n)
0, dn

[ŷ(s) [ l, An
n]

[ 4 C
l − 1

k=0
C

! z log n
en dn

− 1"

j=# 1
en

+1$

(2endn+1)

× exp{− (j − 1) endn[ms(l, h) − e1] − dnI((j − 1) en)+dne2/3}

[ 4 C
l − 1

k=0
C

! z log n
edn

− 1"

j=# 1
en

+1$

3endn exp{− dnqs(l, h, e1)+dne2/3}

[ 12lz log n exp{− dnqs(l, h, 0)+dn2e2/3}, n Q .. L (4.24)

For d > 0, define

tn=exp{ddn}. (4.25)

To prove the next lemma, we chop our time horizon n into intervals of
length tn.

Lemma 4.4. Assume (1.16)(I) and (1.16)(II). For all e3 > 0 and
l ¥ N,

E é P̂ (0, n)
0, dn

[ŷ(s) N n > ltn, An
n] [ (1 − exp{− dnqs(l, h) − dne3}) l, n Q ..

(4.26)
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Proof of Lemma 4.4. Throughout the proof we assume that n is
large enough. For x, y ¥ Z, define (recall (1.9))

P̂ (0, tn)
x, y, dn

(S)(w)=P̂ (0, tn)
x, dn

(S | Stn
=y)(w). (4.27)

For l ¥ N we have (putting x0=0)

E é P̂ (0, n)
0, dn

[ŷ(s) N n > ltn, An
n]

=E é P̂ (0, n)
0, dn

53
l − 1

k=0
{ max

1 [ i [ tn

|sSktn+i+dn/2| < dn}, An
n
6

[ E 5 1
Ẑ (0, n)

0, dn
(w)

C
x1,..., xl: |sxi+dn/2| < dn -1 [ i [ l

D
l − 1

k=0

(P̂ (0, tn)
xk, xk+1, dn

[ max
1 [ i [ tn

|sSi+dn/2| < dn, An
n] Ẑ (0, tn)

xk, xk+1, dn
)(hktn

w) Ẑ (0, n − ltn)
xl, dn

(hltn
w)6

[ (E[ max
x, y: |sx+dn/2|, |sy+dn/2| < dn

P̂ (0, tn)
x, y, dn

[ max
1 [ i [ tn

|sSi+dn/2| < dn, An
n](w)]) l.

(4.28)

To estimate the right-hand side, we fix x, y such that |sx+dn/2| < dn and
|sy+dn/2| < dn. Define P̄ (0, tn)

x, y, dn
to be the following measure for the random

walk S:

P̄ (0, tn)
x, y, dn

(S)(w)=P̂ (0, tn)
x, dn

(S | An
tn

, max
1 [ i [ tn

|sSi+dn/2| < 3dn/2, Stn
=y)(w),

(4.29)

i.e., the path is conditioned to start at x at time 0, to end at y at time tn, to
stay inside the height interval (−3dn/2, dn/2) and to not make excursions
longer than z log tn. Then

P̂ (0, tn)
x, y, dn

[ max
1 [ i [ tn

|sSi+dn/2| < dn, An
n](w)

[ P̄ (0, tn)
x, y, dn

[ max
1 [ i [ tn

|sSi+dn/2| < dn](w)

=1 − P̄ (0, tn)
x, y, dn

[ max
1 [ i [ tn

|sSi+dn/2| \ dn](w). (4.30)

Our goal is to estimate the last term on the right-hand side.
Let

In=[tn/2, tn/2+3z log n],

CIn
={S: there are no i1, i2, i3 ¥ In with i1 < i2 < i3 such that

Si1
¥ “Dn, |Si2

− Si1
|=dn/2, |Si3

− Si2
|=dn/2}, (4.31)
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i.e., CIn
is the event that there are no two half-crossings of a layer in

the time interval In. Define sn=2 Nysdn/2M (recall (4.17)) and note that
sn < z log n for large n by (1.16)(II). Define

a1(n)=tn/2+z log n, a2(n)=tn/2+z log n+sn, (4.32)

and note that [a1(n) − z log n, a2(n)+z log n] … In … [0, tn] for large n. We
have

P̄ (0, tn)
x, y, dn

[ max
1 [ i [ tn

|sSi+dn/2| \ dn](w)

\ P̄ (0, tn)
x, y, dn

[ max
1 [ i [ tn

|sSi+dn/2| \ dn | Sa1(n)=Sa2(n) ¥ {0, −sdn}](w)

× P̄ (0, tn)
x, y, dn

[Sa1(n)=Sa2(n) ¥ {0, −sdn} | CIn
](w) P̄ (0, tn)

x, y, dn
[CIn

](w).
(4.33)

Let us first look at the second term on the right-hand side of (4.33),
which we write as

P̄ (0, tn)
x, y, dn

[Sa1(n)=Sa2(n) ¥ {0, −sdn} | CIn
](w)

=P̄ (0, tn)
x, y, dn

[Sa1(n)=Sa2(n) | Sa1(n) ¥ {0, −sdn}, CIn
](w)

× P̄ (0, tn)
x, y, dn

[Sa1(n) ¥ {0, −sdn} | CIn
](w). (4.34)

To the second term on the right-hand side of (4.34) we can apply the same
argument as in the proof of Lemma 3.1, to obtain

E (0, tn)
x, y, dn

[exp{Htn
(w, S)}, max

1 [ i [ tn

|sSi+dn/2| < 3dn/2, Atn
, CIn

]

[ c4d3
n E (0, tn)

x, y, dn
[exp{Htn

(w, S)}, Sa1(n) ¥ {0, −sdn},

max
1 [ i [ tn

|sSi+dn/2| < 3dn/2, Atn
, CIn

]. (4.35)

Here we use the event CIn
to avoid having to do the first step of (3.5), since

this step does not apply when the endpoint of the path is fixed. Dividing
the two sides of (4.35), we obtain

P̄ (0, tn)
x, y, dn

[Sa1(n) ¥ {0, −sdn} | CIn
](w) \ (c4d3

n)−1. (4.36)

The first term on the right-hand side of (4.34) we treat in a similar way.
Combining the two estimates, we obtain

P̄ (0, tn)
x, y, dn

[Sa1(n)=Sa2(n) ¥ {0, −sdn} | CIn
](w) \ (c4d3

n)−2. (4.37)
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Let us next look at the first term on the right-hand side of (4.33). This
term we can estimate by

P̄ (0, tn)
x, y, dn

[ max
1 [ i [ tn

|sSi+dn/2| \ dn | Sa1(n)=Sa2(n) ¥ {0, −sdn}](w)

\ 1
2 Y (0, sn)

0, “Dn, dn
(ha1(n)w, s) P0[ max

1 [ i [ sn

Si \ dn/2, R1=sn, SR1
=0].

(4.38)

Inserting (4.30), (4.33), (4.37), and (4.38) into the right-hand side of
(4.29) and using Lemma 4.5 below, we see that for e3 > 0

E[ min
x, y: |sx+dn/2|, |sy+dn/2| < dn

P̄ (0, tn)
x, y, dn

[ max
1 [ i [ tn

|sSi+dn/2| \ dn](w)]

\ e−dne3/4(c4d3
n)−2 E[Y (0, sn)

0, “Dn, dn
(w, s)]

× P0[ max
1 [ i [ sn

Si \ dn/2, R1=sn, SR1
=0]. (4.39)

Finally, use Lemmas 4.1 and 4.2. Then we have for large n (recall that
sn=2 Nysdn/2M),

E[ min
x, y: |sx+dn/2|, |sy+dn/2| < dn

P̄ (0, tn)
x, y, dn

[ max
1 [ i [ tn

|sSi+dn/2| \ dn](w)]

\ (c4d3
n)−2 exp{− dn[y0(0) ms(l, h)+I(y0(0))] − dn(3e3/4)}

\ exp{− dnqs(l, h) − dne3}. L (4.40)

4.4. Two Inequalities

In the proof of Lemma 4.4 we have used the following:

Lemma 4.5. Let (l, h) ¥ L, and assume (1.16)(I) and (1.16)(II).
Let P̄ (0, tn)

x, y, dn
(w) be the path measure defined in (4.29). Then for s=± 1:

(i)

E[Y (0, n)
0, “Dn, dn

(w, s) min
x, y: |sx+dn/2|, |sy+dn/2| < dn

P̄ (0, tn)
x, y, dn

[CIn
](w)]

\ E[Y(0, n)
0, “Dn, dn

(s)] E[ min
x, y: |sx+dn/2|, |sy+dn/2| < dn

P̄ (0, tn)
x, y, dn

[CIn
](w)]. (4.41)

(ii)

E[ min
x, y: |sx+dn/2|, |sy+dn/2| < dn

P̄ (0, tn)
x, y, dn

[CIn
](w)] \ exp{− edn} -e > 0, n \ n0(e).

(4.42)
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Proof of Lemma 4.5. (i) We will prove that

(a) w W Y (0, n)
0, “Dn, dn

(w, s),

(b) w W min
x, y: |sx+dn/2|, |sy+dn/2| < dn

P̄ (0, tn)
x, y, dn

[CIn
](w), (4.43)

are both non-decreasing when s=+1 and both non-increasing when
s=−1. The claim will then follow from the FKG-inequality applied to P
(see Fortuin et al. (4)).

We give the proof for s=+1. The proof for s=−1 is analogous.

(a) Fix 1 [ j [ n. Let w, wŒ be such that wi=w −

i for 1 [ i [ n with
i ] j and wj=−1, w −

j=+1. We have from (4.1) that

Y (0, 2n)
0, “Dn, dn

(wŒ, +1) \ Y (0, 2n)
0, “Dn, dn

(w, +1) (4.44)

if and only

Ẑ (0, 2n)
0, “Dn, dn

(wŒ) [ e2lẐ (0, 2n)
0, “Dn, dn

(w). (4.45)

With the help of the relation (recall (2.1))

H2n, dn
(wŒ, S)=H2n, dn

(w, S)+2lDdn
(Sj), (4.46)

the inequality in (4.45) amounts to (recall (2.13))

E0[exp{H2n, dn
(wŒ, S)}, S2n ¥ “Dn]

[ E0[exp{H2n, dn
(wŒ, S)} e2l[1 − Ddn

(Sj)], S2n ¥ “Dn], (4.47)

which is trivially true because Ddn
(Sj) ¥ {− 1, +1}.

(b) Let

Bx, y
n ={S: S0=x, Stn

=y, Si ¥ (−3dn/2, dn/2) -1 [ i [ tn} 5 An
tn

.
(4.48)

Then

P̄ (0, tn)
x, y, dn

[CIn
](w)=

;S ¥ CIn
5 B

x, y
n

exp{Htn, dn
(w, S)}

;S ¥ B
x, y
n

exp{Htn, dn
(w, S)}

. (4.49)

Fix x, y ¥ (−3dn/2, dn/2). Pick w, wŒ as in the proof of (a). Then

P̄ (0, tn)
x, y, dn

[CIn
](wŒ) \ P̄ (0, tn)

x, y, dn
[CIn

](w) (4.50)
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if and only if

C
S1 ¥ B

x, y
n

C
S2 ¥ B

x, y
n

r(S1)(w) r(S2)(w) f(S1)[g(S1) − g(S2)] \ 0, (4.51)

where we abbreviate

r(S)(w)=
exp{Htn, dn

(w, S)}

;S ¥ B
x, y
n

exp{Htn, dn
(w, S)}

, S ¥ Bx, y
n , (4.52)

and

f(S)=1{S ¥ CIn
}, g(S)=e2lDdn

(Sj), S ¥ Bx, y
n . (4.53)

Here we have again used (4.46). What (4.51) says is that under the proba-
bility measure r(w) the functions f and g are positively correlated:

r(w)[fg] \ r(w)[f] r(w)[g]. (4.54)

We will prove (4.54) with the help of the FKG-inequality. In order to
do so, we need a partial ordering on paths. To achieve this, we first reflect
paths in the middle line at height − dn/2. To that end we rewrite (4.54) as

r̃(w)[fg] \ r̃(w)[f] r̃(w)[g] (4.55)

with

r̃(S)(w)=
exp{Htn, dn

(w, S)} 2N(S)

;S ¥ B2
x, y
n

exp{Htn, dn
(w, S)} 2N(S) , S ¥ B2 x, y

n , (4.56)

where

B2 x, y
n ={S: S0=x, Stn

=y, Si ¥ [− dn/2, dn/2) -1 [ i [ tn} 5 An
tn

,

N(S)= C
tn

i=1
1{Si=−dn/2}.

(4.57)

Here we use that f, g are invariant under the reflection (recall (4.31) and
the symmetry of the medium with respect to middle lines), and now also
x, y ¥ [− dn/2, dn/2).

On the set B2 x, y
n there is a natural partial ordering:

S1 [ S2 if and only if [S1]i [ [S2]i -1 [ i [ tn. (4.58)
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Let S1 K S2 and S1 N S2 denote the pointwise maximum, respectively, point-
wise minimum of S1 and S2. Then

Htn, dn
(w, S1 K S2)+Htn, dn

(w, S1 N S2)=Htn, dn
(w, S1)+Htn, dn

(w, S2),

N(S1 K S2)+N(S1 N S2)=N(S1)+N(S2),
(4.59)

because, for each i, either [S1 K S2]i=[S1]i and [S1 N S2]i=[S2]i or vice
versa. Consequently,

r̃(w)(S1 K S2) r̃(w)(S1 N S2)=r̃(w)(S1) r̃(w)(S2), -S1, S2, (4.60)

i.e., r̃(w) satisfies the convexity condition needed for the FKG-inequality.
Now, both S W f(S) and S W g(S) are non-decreasing in the partial

ordering defined by (4.58). Hence we conclude that (4.55) indeed holds, and
therefore also (4.50). Since x, y were fixed arbitrarily, the same is true when
in (4.50) we take the minimum over x, y. Since w was fixed arbitrarily, this
completes the proof of (b) in (4.43).

(ii) We give the proof for s=+1. The proof for s=−1 is analogous.
We will prove that

(a) min
x, y ¥ (−3dn/2, dn/2)

P̄ (0, tn)
x, y, dn

[CIn
](w) \ min

x, y ¥ [− dn, 0]
P̄ (0, tn), In

x, y, dn
[CIn

](w) -w,

(b) E[ min
x, y ¥ [− dn, 0]

P̄ (0, tn), In
x, y, dn

[CIn
](w)] \ exp{− edn} -e > 0, n \ n0(e),

(4.61)

where

P̄ (0, tn), In
x, y, dn

(S)(w)=P̂ (0, tn), In
x, dn

(S | An
tn

, Si ¥ [− dn, 0] -1 [ i [ tn, Stn
=y)(w)

(4.62)

with P̂ (0, tn), In
x, dn

the same probability measure as in (1.9) but with the inter-
action ‘‘switched off ’’ outside In, i.e., with (2.1) replaced by

HIn
tn, dn

(w, S)=l C
i ¥ In

Ddn
(Si)(wi+h). (4.63)

(a) By (4.50), the left-hand side of (4.61a) is non-decreasing in w.
Therefore we get a lower bound by putting wi=−1 for all 1 [ i [ n except
i ¥ In. Hence

P̄ (0, tn)
x, y, dn

[CIn
](w) \

;S ¥ CIn
5 B

x, y
n

exp{HIn
tn, dn

(w, S) − 2l(1 − h) NIn
+ (S)}

;S ¥ B
x, y
n

exp{HIn
tn, dn

(w, S) − 2l(1 − h) NIn
+ (S)}

,

(4.64)
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where we recall (4.48) and define

NIn
+ (S)= C

1 [ i [ tn, i ¨ In

1{Ddn
(Si)=+1} (4.65)

to be the number of bonds in the path over the time interval (0, tn)0In that
fall in a (+1)-layer. Next, we do the reflection in the middle line at height
− dn/2, which gives

r.h.s. (4.64)=r̃(CIn
)(w) (4.66)

with

r̃(S)=
exp{HIn

tn, dn
(w, S) − 2l(1 − h) NIn

+ (S)} 2N(S)

;S ¥ B2
x, y
n

exp{HIn
tn, dn

(w, S) − 2l(1 − h) NIn
+ (S)} 2N(S)

, S ¥ B2 x, y
n ,

(4.67)

where we recall (4.57).
Our next step is to remove the NIn

+ (S) with the help of the Holley-
inequality (see Holley (8)). To that end, let

Kn={S: NIn
+ (S)=0} (4.68)

and define

r̂(S)=
1{S ¥ Kn} exp{HIn

tn, dn
(w, S)} 2N(S)

;S ¥ B2
x, y
n

1{S ¥ Kn} exp{HIn
tn, dn

(w, S)} 2N(S)
, S ¥ B2 x, y

n . (4.69)

We observe that r̃ is stochastically larger than r̂ in the partial ordering
defined by (4.58), i.e.,

r̃(S1 K S2) r̂(S1 N S2) \ r̃(S1) r̂(S2), -S1, S2. (4.70)

Indeed, if S2 ¥ Kn, then S1 N S2 ¥ Kn and NIn
+ (S1 K S2)=NIn

+ (S1). Together
with (4.59), this proves (4.70). Since S W 1{S ¥ CIn

} is non-decreasing in the
partial ordering, as was noted below (4.60), it follows from the Holley-
inequality that

r̃(CIn
) \ r̂(CIn

). (4.71)
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Finally, we undo the reflection by removing the weight factor 2N(S), to
obtain

r̂(CIn
)=

;S ¥ CIn
5 B

x, y
n 5 Kn

exp{HIn
tn, dn

(w, S)}

;S ¥ B
x, y
n 5 Kn

exp{HIn
tn, dn

(w, S)}
, (4.72)

which is equal to the right-hand side of (4.61a).

(b) The effect of ‘‘switching off ’’ the interaction outside In is that the
path measure in (0, tn)0In is that of simple random walk. As we will see
shortly, this fact will allow us to control the conditioning that appears in
(4.62).

Recall (4.31). Define

D1
tn

={S: ,i ¥ [tn/2 − (z/2) log n, tn/2]: Si ¥ {0, −dn}},

D2
tn

={S: ,i ¥ [tn/2+(3z) log n, tn/2+(7z/2) log n]: Si ¥ {0, −dn}},

DIn
={S: ,i ¥ [tn/2, tn/2+(z/2) log n]

,j ¥ [tn/2+(5z/2) log n, tn/2+(3z) log n]:

Si ¥ {0, −dn}, Sj ¥ {0, −dn}}.

(4.73)

Then

(A1
tn

5 A2
tn

5 AIn
5 D1

tn
5 D2

tn
5 DIn

) … Atn
… (A1

tn
5 A2

tn
5 AIn

)
(4.74)

with A i
tn

the event that no excursion in the left-half (i=1) resp. the right-
half (i=2) of (0, tn)0In exceeds z log n, and AIn

the same in In. With this
observation we can estimate

min
x, y ¥ [− dn, 0]

P̄ (0, tn), In
x, y, dn

[CIn
](w)

\ min
x, y ¥ [− dn, 0]

;xŒ, yŒ ¥ [− dn, 0] Px(A1
tn

5 B1
tn

5 D1
tn

5 {Stn/2=xŒ})

× P̂In
xŒ, dn

(CIn
5 AIn

5 BIn
5 DIn

5 {Stn/2+3z log n=yŒ})(w)

× PyŒ(A
2
tn

5 B2
tn

5 D2
tn

5 {Stn
=y})

;xŒ, yŒ ¥ [− dn, 0] Px(A1
tn

5 B1
tn

5 {Stn/2=xŒ})

× P̂In
xŒ, dn

(AIn
5 BIn

5 {Stn/2+3z log n=yŒ})(w)

× PyŒ(A
2
tn

5 B2
tn

5 {Stn
=y})

(4.75)
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with B i
tn

the event that the path stays confined to [− dn, 0] in the left-half
(i=1) resp. the right-half (i=2) of (0, tn)0In, and BIn

the same in In.
Here, Px(S) is the path measure for simple random walk and P̂In

x, dn
(S)(w) is

the path measure for the heteropolymer in In (as in (1.9)), both for the path
starting from x.

Next, we estimate

r.h.s. (4.75) \ I × II(w) × III (4.76)

with

I= min
x, xŒ ¥ [− dn, 0]

Px(D1
tn

| A1
tn

5 B1
tn

5 {Stn/2=xŒ}),

II(w)= min
xŒ, yŒ ¥ [− dn, 0]

P̂In
xŒ, dn

(CIn
5 DIn

| AIn
5 BIn

5 {Stn/2+3z log n=yŒ})(w),

III= min
y, yŒ ¥ [− dn, 0]

PyŒ(D
2
tn

| A2
tn

5 B2
tn

5 {Stn
=y}).

(4.77)

Since tn ± d2
n by (4.25), the minimum over x in I and y in III is not felt in

the limit of large n. Therefore we get

I, III \ exp{− c(dn/2)2/2(z/2) log n} for some c > 0, (4.78)

the right-hand side being the probability that simple random walk travels
a distance dn/2 within time (z/2) log n in order to hit the interface as
required in (4.73). Since dn ° log n by (1.16)(II), the latter is much larger
than the bound in the right-hand side of (4.61b).

Thus, it remains to bound E(II(w)). This is a quantity for the hetero-
polymer in In where all the interaction with (0, tn)0In has vanished. First,
we estimate

II(w) \ exp{− c(dn/2)2/2(z/2) log n}

× P̂In
0, dn

(CIn
| AIn

5 BIn
5 {Stn/2+3 log n=0})(w) (4.79)

by an argument similar to that in the proof of Lemma 2.1. ( The event DIn

is realized when the path hits 0 at both ends of In.) Second, we use that
dn ± log |In | ’ log log n by (1.16)(I), to obtain that

lim
n Q .

E[P̂In
0, dn

(CIn
| AIn

5 BIn
5 {Stn/2+3 log n=0})(w)]=1. (4.80)
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Indeed, this follows from the result in Albeverio and Zhou (1) cited at the
end of Section 1.2, namely, in P-probability the maximal length and the
maximal height of an excursion in the interval In are of order log |In |. (In
ref. 1, Theorems 5.3 and 6.1, this result was proved only for h=0, but it
carries over to 0 < h < hc(l) by similar arguments; see in particular Biskup
and den Hollander, (2) Theorem 3(e) and Lemma 4.) This, together with
(1.16(II)), finishes the proof. L

5. PROOF OF THEOREM 1.4.

In this section we prove Theorem 1.4, which is our main result for the
path behavior in the localized regime L. The proof is based on an upper
bound (Lemma 5.1) and a lower bound (Lemma 5.2) for the quantity
defined in (1.14). The proof relies on Lemmas 3.2, 3.3 and 4.3, 4.4.

Recall (1.12)–(1.15). It is clear that, under E é P̂ (0, n)
0, dn

, (S̃t)t ¥ [0, n] is a
simple random walk on dnZ with i.i.d. random waiting times, since the
jump process

(Syk p hŷ(+1)+ŷ(+1) − Syk − 1 p hŷ(+1)+ŷ(+1))
Nn − 1
k=1 (5.1)

is an i.i.d. sequence of random variables taking the values ± dn with prob-
ability 1/2 each and the medium Dn is symmetric with respect to the middle
lines “Dn+dn/2. So it remains to prove (1.17). Since

VarE é P̂(0, n)
0, dn

(S̃un)=E é Ê (0, n)
0, dn

[S̃2
un]=d2

n E é Ê (0, n)
0, dn

[Nun − 1], (5.2)

the proof of (1.17) amounts to analyzing the asymptotic behavior of the
expected number of jumps Nun. This will be done in Lemmas 5.1 and 5.2
below and involves the quantity q(l, h) defined in (4.19).

Lemma 5.1. Let (l, h) ¥ L. Assume (1.16)(I) and (1.16)(II). For all
e4 > 0 and u ¥ (0, 1),

E é Ê (0, n)
0, dn

[Nun] [ un exp{− q(l, h) dn+e4dn}, n Q .. (5.3)

Proof of Lemma 5.1. Throughout the proof we assume that n is
large enough. Let us first resume what we know from Lemmas 3.2 and 4.3.
Choose o > 0 and c2 > 0 according to Lemma 2.3, z1 > 0, z=(2+z1)/o

> 2/o and e5 ¥ (0, q−1(l, h) N q+1(l, h)). Then for all N ¥ N and li ¥ N
(0 [ i [ N) with ;N

i=0 (li+z log n) [ n we have
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E é P̂ (0, n)
0, dn

[{ŷ(+1) [ l0} 5 3
N

i=1
{yi p hŷ(+1) − yi − 1 p hŷ(+1) [ li}]

[ ˛0 if inf
i

li < dn/2,

1dn+ inf
IN … {0,..., N}

D
i ¥ IN

(li exp{− q(−1)i(l, h) dn+e5dn})2N 1 otherwise,

(5.4)

where dn=c2n1 − oz=c2 exp{− (1+z1) log n}. Let us next define

es, n=1
2 exp{qs(l, h) dn − e5dn}+dn/2,

ps, n=1
2 (1+exp{− qs(l, h) dn+e5dn+log dn}).

(5.5)

If we put I (1)
N ={0 [ i [ N : li < e(−1)i, n}, then for all i ¥ I (1)

N we have

li exp{− q(−1)i(l, h) dn+e5dn} [ p(−1)i, n [ (1 − dn)−1, n Q .. (5.6)

Therefore (5.4) yields

E é P̂ (0, n)
0, dn

[{ŷ(+1) [ l0} 5 3
N

i=1
{yi p hŷ(+1) − yi − 1 p hŷ(+1) [ li}]

[ 1dn1{I(1)
N ] ”}+D

N

i=0
(li exp{− q(−1)i(l, h) dn+e5dn} 1i ¥ I(1)

N
+1i ¨ I(1)

N
)2 1{inf i li \ dn/2}

[ dn1{I(1)
N ] ”, inf i li \ dn/2}+D

N

i=0
(p(−1)i, n1{dn/2 [ li < e(−1)i, n}+1{li \ e(−1)i, n}). (5.7)

For N ¥ N0, let (X0,..., XN) be the random vector in NN+1 with dis-
tribution P given by

P 53
N

i=0
{Xi [ li}6=r.h.s. (5.7). (5.8)

Define T (1)
−1=0 and T (1)

k =;k
i=0 Xi, k \ 0. For t \ 0, define

N (1)
t =sup{k ¥ N0 : T (1)

k − 1 [ t}. (5.9)

For k ¥ {− 1,..., K(n, t)} with K(n, t)=N n − t
z log nM, we have (recall (1.14))

E é P̂ (0, n)
0, dn

[Nt \ k+1]=E é P̂ (0, n)
0, dn

[yk p hŷ(1)+ŷ(1) [ t]

[ P[T (1)
k [ t]

=P[N(1)
t \ k+1]. (5.10)
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Therefore we obtain from (5.10) that, for u ¥ (0, 1),

E é Ê (0, n)
0, dn

[Nun]= C
Nun/(dn/2)M

k=0
E é P̂ (0, n)

0, dn
[Nun > k]

= C
K(n, un) N Nun/(dn/2)M

k=0
E é P̂ (0, n)

0, dn
[Nun > k]

+ C
Nun/(dn/2)M

k=K(n, un) N Nun/(dn/2)M+1
E é P̂ (0, n)

0, dn
[Nun > k] (5.11)

[ C
.

k=0
P[N(1)

un > k]+1 un
(dn/2)

− K(n, un)2
+

P[N(1)
un > K(n, un)]

[ 11+
un

(dn/2) K(n, un)
− 12 E[N(1)

un ]

[ (log n) E[N(1)
un ]. (5.12)

Thus we are left with proving an upper bound for the expectation on the right-
hand side of (5.11), which only contains the random variables Xi.

To handle E[N(1)
un ], note that the Xi’s do not have the same distribution:

even i corresponds to s=+1, odd i to s=−1. Therefore we need to further
simplify the problem. Let Y0=0 and Yi=X2i − 2+X2i − 1, i ¥ N. Then we have

N (1)
un =sup{k ¥ N0 : T (1)

k − 1 [ un}

[ 2 sup{k ¥ N0 : T (1)
2k − 1 [ un}

=2 sup 3k ¥ N0 : C
k

i=1
Yi [ un4 (5.13)

and

P 53
N

i=1
{Yi [ li}6=P 53

N

i=1
{X2i − 2+X2i+1 [ li}6

[ dn1{I(2)
N ] ”, inf i li \ dn}+D

N

i=1
(p1{dn [ li < en}+1{li \ en}), (5.14)

where we introduce

1 > p > lim
n Q .

[p+1, n+p−1, n − p+1, n p−1, n]=3/4, (5.15)

en=e+1, n+e−1, n=dn+ C
i=0, 1

1
2 exp{q(−1)i(l, h) dn − e5dn}, (5.16)

I (2)
N ={i \ 1 : li < en}. (5.17)
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For N ¥ N0, let (Z1,..., ZN) be the random vector in NN with distribution

P 53
N

i=1
{Zi [ li}6=r.h.s. (5.14). (5.18)

Define T (2)
0 =0 and T (2)

k =;k
i=1 Zk, k ¥ N. For u ¥ (0, 1), define

N (2)
un =sup{k ¥ N0 : T (2)

k [ un}. (5.19)

Using (5.10)–(5.14), we see that for u ¥ (0, 1),

E é Ê (0, n)
0, dn

[Nun] [ 2(log n) E[N(2)
un ]. (5.20)

Therefore it remains to calculate

E[N(2)
un ]= C

.

k=0
P[N(2)

un > k]

= C
.

k=0
P[T(2)

k+1 [ un]

= C
.

k=0
P[T(2)

k+1 − (k+1) dn [ un − (k+1) dn]

= C
Nun/dn − 1M

k=0
C

# un − (k+1) dn
en − dn

$

l=0
P[T(2)

k+1 − (k+1) dn=l(en − dn)]

[ C
Nun/dn − 1M

k=0

1dn+ C
# un − (k+1) dn

en − dn
$

l=0

1k+1
l

2 pk+1 − l(1 − p) l2

[ c2un−z1/dn+ C
Nun/en M+1

l=0
C

k: k+1 \ l

1k+1
l

2 pk+1 − l(1 − p) l

[ c2un−z1/dn+1un
en

+22 (1 − p)−1. (5.21)

Inserting this into (5.20) and recalling (5.16), we obtain that

E é Ê (0, n)
0, dn

[Nun] [ un exp{− q(l, h) dn+2e5dn}, (5.22)

which completes the proof since e5 is arbitrary. L
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Lemma 5.2. Let (l, h) ¥ L. Assume (1.16)(I) and (1.16)(II). For all
e6 > 0 and u ¥ (0, 1),

E é Ê (0, n)
0, dn

[Nun] \ un exp{− q(l, h) dn − e6dn}, n Q .. (5.23)

Proof of Lemma 5.2. Let us first resume what we know from
Lemmas 3.3 and 4.4. Choose o > 0 and c2 > 0 according to Lemma 2.3,
z1 > 0, z=(2+z1)/o > 2/o, e7 > 0, and d > 0. Then for all N ¥ N and li ¥ N

(0 [ i [ N) we have

E é P̂ (0, n)
0, dn

5{ŷ(+1) N n > L0} 5 3
N

i=1
{(yi p hŷ(+1)) N n − (yi − 1 p hŷ(+1)) N n > L i}6

[ ˛0 if ; i L i \ n,

(dn+<N
i=0 ((1 − exp{− q(−1)i(l, h) dn − e7dn}) li+dn)) N 1 if (f),

1 otherwise,
(5.24)

where L i=li exp{ddn} − z log n, dn=c2n1 − oz=c2 exp{− (1+z1) log n}, and
(f) is the condition

C
i

L i < n and inf
i

L i exp{− q(−1)i(l, h) dn − 2e7dn − ddn} \ 1.

(5.25)

Again, our goal is to simplify the expression on the right-hand side of (5.25).
Under (f) we have

(1 − exp{− q(−1)i(l, h) dn − e7dn}) li [ exp{− li
1
2 exp{− q(−1)i(l, h) dn − e7dn}}

[ exp{− 1
2 exp{e7dn}}=o(dn). (5.26)

Note that lim n Q . dn=0.
For N ¥ N, let (X̂1,..., X̂N) be the random vector in NN with distribution

P given by

P 53
N

i=1
{X̂i > L i}6=˛0 if ; i L i \ n,

dn+(2dn)N if ; i L i < n and infi
Li
en

\ 1,

1 otherwise,

(5.27)

where

en=exp{q(l, h) dn+2e7dn+ddn}. (5.28)
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Define T (3)
0 =0 and T (3)

k =;k
i=1 X̂i, k ¥ N. For t \ 0, define

N (3)
t =sup{k ¥ N0 : T (3)

k [ t}. (5.29)

Using a similar argument as in (5.10), we see that for all k ¥ N0 2 {− 1},

E é P̂ (0, n)
0, dn

[Nt \ k+1] \ P[N(3)
t \ k+1], (5.30)

and so we obtain, for u ¥ (0, 1),

E é Ê (0, n)
0, dn

[Nun] \ E[N(3)
un ]. (5.31)

Thus we are left with proving a lower bound for the expectation on the right-
hand side of (5.31).

We have

E[N(3)
un ]= C

.

k=0
P[N(3)

un > k]

= C
.

k=0
P[T(3)

k+1 [ un]

= C
.

k=0
P[T(3)

k+1 − (k+1) en [ un − (k+1) en]

= C
Nun/en − 1M

k=0
C

# un − (k+1) en
n − en

$

l=0
P[T(2)

k+1 − (k+1) dn=l(en − dn)]. (5.32)

Since lim n Q .

un − (k+1) en
n − en

=u < 1, only the term with l=0 contributes asymp-
totically. But this term can be explicitly written down, so

E[N(3)
un ]= C

Nun/en − 1M

k=0

11 −1dn+ C
k+1

l=1

1k+1
l

2 (−1) l+1(2dn) l22

\ −
un
en

dn+ C
Nun/en − 1M

k=0
(1 − 2dn)k − 1

=
1 − 2dn

dn
[1 − (1 − 2dn)un/en](1+o(1))

=
1 − 2dn

dn

51 − exp 3 −
un
en

2dn(1+o(1))46

=(1 − 2dn)
un
en

(1+o(1)). (5.33)
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Inserting this into (5.31), we obtain that

E é Ê (0, n)
0, dn

[Nun] \ un exp{− q(l, h) dn − 3e7dn − ddn}, (5.34)

which finishes the proof since e7 and d are arbitrary.
Combining (5.2) and Lemmas 5.1 and 5.2, we obtain (1.17) in

Theorem 1.4. The bounds q(l, h) ¥ (0, .) were already mentioned in (4.18)
and (4.19). L

6. PROOF OF THEOREM 1.5.

In this section we prove Theorem 1.5. Recall the variational problem
in (4.18),

qs(l, h)=inf
y \ 1

[yms(l, h)+I(y)], (6.1)

where I is the rate function in (4.14) and ms(l, h) is the quantity defined in
(4.2). Throughout the proof, l ¥ (0, .) is fixed.

(i) It is immediate from (4.1), (4.2), and the symmetry of P under
the reflection w Q − w that m+1(l, 0)=m−1(l, 0). Consequently, q+1(l, 0)
=q−1(l, 0) via (6.1).

(ii) Return to (4.3). Fix 0 [ h2 < h1 < hc(l) and write

exp 3l C
m

i=1
(D(Si) − s)(wi+h1)4

=G (0, m)
s (S) exp 3l C

m

i=1
(D(Si) − s)(wi+h2)4 (6.2)

with

G (0, m)
s (S)=exp 3l(h1 − h2) C

m

i=1
(D(Si) − s)4 . (6.3)

It follows from (6.3) that, for any S,

exp{− 2l(h1 − h2) m} [ G (0, m)
+1 (S) [ 1,

1 [ G (0, m)
−1 (S) [ exp{2l(h1 − h2) m}.

(6.4)
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Consequently, for any w,

Y (0, m)(w, +1)(l, h2)

[ Y (0, m)(w, +1)(l, h1)

[ exp{2l(h1 − h2) m} Y (0, m)(w, +1)(l, h2),

Y (0, m)(w, −1)(l, h2) exp{− 2l(h1 − h2) m}

[ Y (0, m)(w, −1)(l, h1) [ Y (0, m)(w, −1)(l, h2).

(6.5)

Via (4.5), this shows that h W ms(l, h) is continuous for s=± 1, non-
increasing for s=+1 and non-decreasing for s=−1. Via (6.1), this proves
that h W qs(l, h) is continuous for s=± 1, non-increasing for s=+1 and
non-decreasing for s=−1.

(iii) By Jensen, Theorem 1.1 (see also Bolthausen and den Hollander, (3)

Lemmas 1 and 2), (4.3) and the strong law of large numbers for w, we have

1
2n

log E [Y(0, 2n)(w, s)] \
1
2n

E [log Y (0, 2n)(w, s)],

lim
n Q .

1
2n

log[1/Y(0, 2n)](w, s)=f(l, h) − slh P-a.s. and in L1(P).

(6.6)

Therefore ms(l, h) [ f(l, h) − slh. Hence lim h ‘ hc(l) m+1(l, h)=0. Thus
lim h ‘ hc(l) q+1(l, h)=0, because infy \ 1 I(y)=I(.)=0. L
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